Symposium July 2012

Short description

The rodent whisker-to-barrel cortex somatosensory system offers unique opportunities to study the development, structure, function and behaviour related dynamics of sensory processing at cortical and subcortical levels. Sensory information from the whiskers is transmitted in a highly ordered topographic manner to the primary somatosensory (barrel) cortex. Here, the thalamocortical afferents arising from one single whisker of the contralateral snout, project primarily to layer IV and neocortical modules of 300-500 µm in diameter process this information in a radial manner. Short-range horizontal and longer-range cortico-cortical projections enable further inter-columnar and widespread inter-areal processing, respectively. In this satellite event 13 speakers from 7 different countries will give a state-of-the-art update on the technological advances in studying cortical function and dynamics. They will present their hypotheses and novel findings on the development of thalamocortical projections (1) and intracortical microcircuits (2-4), sensory processing at different levels of the brain (5, 6), the spatio-temporal dynamics of cortical cell ensembles (7, 8), activity-dependent synaptic plasticity (9), the role of neuromodulatory systems in cortical processing (10) and on the correlation of whisker-related behaviour with neuronal activity in a well-defined cortical network (11-14) (for review 15-18). This satellite event will start 2 hours after closing the last FENS 2012 plenary lecture in a hotel 20-30 min walking distance from the Centre Forum (see map below). The hotel can host up to 110 participants in the lecture hall.

 

Publications

1. Garel, S., and Rubenstein, J. L. (2004) Intermediate targets in formation of topographic projections: inputs from the thalamocortical system.
Trends Neurosci. 27, 533-539
http://www.ncbi.nlm.nih.gov/pubmed/15331235

2. Cheetham, C. E., and Fox, K. (2010) Presynaptic development at L4 to l2/3 excitatory synapses follows different time courses in visual and somatosensory cortex.
J. Neurosci. 30, 12566-12571
http://www.jneurosci.org/content/30/38/12566.abstract

3. Dupont, E., Hanganu, I. L., Kilb, W., Hirsch, S., and Luhmann, H. J. (2006) Rapid developmental switch in the mechanisms driving early cortical columnar networks.
Nature 439, 79-83
http://www.ncbi.nlm.nih.gov/pubmed/16327778

4. Heiss, J. E., Katz, Y., Ganmor, E., and Lampl, I. (2008) Shift in the balance between excitation and inhibition during sensory adaptation of S1 neurons.
J. Neurosci. 28, 13320-13330
http://www.jneurosci.org/content/28/49/13320.full

5. Alenda, A., Molano-Mazon, M., Panzeri, S., and Maravall, M. (2010) Sensory input drives multiple intracellular information streams in somatosensory cortex.
J. Neurosci. 30, 10872-10884
http://www.jneurosci.org/content/30/32/10872.short

6. Lundstrom, B. N., Fairhall, A. L., and Maravall, M. (2010) Multiple timescale encoding of slowly varying whisker stimulus envelope in cortical and thalamic neurons in vivo.
J. Neurosci. 30, 5071-5077
http://www.ncbi.nlm.nih.gov/pubmed/20371827

7. Grewe, B. F., Langer, D., Kasper, H., Kampa, B. M., and Helmchen, F. (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision.
Nat. Methods 7, 399-405
http://www.nature.com/nmeth/journal/v7/n5/abs/nmeth.1453.html

8. Kerr, J. N., de Kock, C. P., Greenberg, D. S., Bruno, R. M., Sakmann, B., and Helmchen, F. (2007) Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex.
J. Neurosci. 27, 13316-13328
http://www.jneurosci.org/content/27/48/13316.short

9. Wallace, H., Glazewski, S., Liming, K., and Fox, K. (2001) The role of cortical activity in experience-dependent potentiation and depression of sensory responses in rat barrel cortex.
J. Neurosci. 21, 3881-3894
http://www.jneurosci.org/content/21/11/3881

10. Eggermann, E., and Feldmeyer, D. (2009) Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4. Proc.
Natl. Acad. Sci. U. S. A 106, 11753-11758
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710689/

11. Poulet, J. F., and Petersen, C. C. (2008) Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice.
Nature 454, 881-885
http://www.ncbi.nlm.nih.gov/pubmed/18633351

12. Stüttgen, M. C., and Schwarz, C. (2008) Psychophysical and neurometric detection performance under stimulus uncertainty.
Nat. Neurosci. 11, 1091-1099
http://www.ncbi.nlm.nih.gov/pubmed/19160508

13. Jacob, V., Le Cam, J., Ego-Stengel, V., and Shulz, D. E. (2008) Emergent properties of tactile scenes selectively activate barrel cortex neurons.
Neuron 60, 1112-1125
http://www.ncbi.nlm.nih.gov/pubmed/19109915

14. Gentet, L. J., Avermann, M., Matyas, F., Staiger, J. F., and Petersen, C. C. (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice.
Neuron 65, 422-435
http://www.ncbi.nlm.nih.gov/pubmed/20159454

15. Diamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D., and Ahissar, E. (2008) 'Where' and 'what' in the whisker sensorimotor system.
Nat. Rev. Neurosci. 9, 601-612
http://www.ncbi.nlm.nih.gov/pubmed/18641667

16. Petersen, C. C. (2007) The functional organization of the barrel cortex.
Neuron 56, 339-355
http://www.ncbi.nlm.nih.gov/pubmed/17964250

17. Fox, K. (2008) Barrel Cortex, Cambridge Univ. Press, Cambridge
http://www.cambridge.org/gb/knowledge/isbn/item1172868/?site_locale=en_GB

18. Staiger, J. F., Zuschratter, W., Luhmann, H. J., and Schubert, D. (2009)
Local circuits targeting parvalbumin-containing interneurons in layer IV of rat barrel cortex.
Brain Struct. Funct. 214, 1-13
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782126/